Current Status of $K^+ \to \pi^0 \mu^+ \nu_\mu \gamma$ study

FUJIWARA, Tsunehiro
Department of Physics, Kyoto University
fujiwara@scphys.kyoto-u.ac.jp

CONTENTS:

- Introduction
- Current Status of Data analysis: upgrade points.
 - Kp2g background estimation
- Analysis schedule
- Summary

Physics Motivations

Chiral Perturbation Theory

QCD effective theory in low energy region quark field → pseudoscalar meson field

(using Only Chiral Symmetry)

Structure Dependent

Internal Bremsstrahlung

Branching ratio is predicted as $\sim 2.0 \times 10^{-5}$ ($E_{\gamma} > 30 MeV, \theta_{\mu\gamma} > 20^{\circ}$)

T-violation

$$\overrightarrow{P_{\pi}} \cdot (\overrightarrow{P_{\mu}} \times \overrightarrow{P_{\gamma}})$$

$$\overrightarrow{P_{\mu}} \times \overrightarrow{P_{\gamma}}$$

$$\overrightarrow{P_{\pi}}$$

$$N_{+} \equiv \text{Number of } \theta < \pi/2$$

 $N_{-} \equiv \text{Number of } \theta > \pi/2$

$$A_{\xi} = \frac{N_+ - N_-}{N_+ + N_-}$$
 (π up-down asymmetry against the " $\mu - \gamma$ plane")

within SM, this $A_{\xi} = 1.14 \times 10^{-4}$ due to final state interaction. probe to the physics beyond SM(hep-ph/0305067)

Experimental Status

Previous exp.@Argonne National Laboratory (PR D8 1307(1973))
No events were observed. :

$$BR < 6.1 \times 10^{-5} (CL = 90\%)$$

No observation yet!

Other $K_{l3\gamma}$ decays are already measured...

*
$$K_{e3\gamma}^+$$
 ... $(2.62 \pm 0.20) \times 10^{-4}$

*
$$K_{e3\gamma}^0 \dots (3.62^{+0.26}_{-0.21}) \times 10^{-3}$$

*
$$K_{\mu 3\gamma}^0 \dots (5.7^{+0.6}_{-0.7}) \times 10^{-4}$$

Structure Dependent Term: NOT MEASURED!

Event Display

3Gamma SCALE 1:16.0

- * 3γ clusters in Barrel Veto
- Right Stopping Counter
- No Extra Activity

RUN 39415 EVENT 426

G3PASS1/G3PASS2

- ***** PASS1 (common to $K_{\mu3\gamma}/K_{\pi2\gamma}$ ana.)
 - Data Set: DLT * 35
 - Number of KB_LIVE: 1.86×10^{12} (1.4 times larger than that of '95)
 - Data Reduction:
 1TB → 346GB(33.8%)(DLT*13)
- * PASS2 (for $K_{\mu3\gamma}$) (not so tight for Background study)
 - Data Reduction: 346GB → 60GB

Backgrounds Sources

- * $\pi^0 \mu^+ \nu_\mu$ +accidental/splitted γ
- * $\pi^0 e^+ \nu_e$ +accidental/splitted γ
- * $\pi^+\pi^0\pi^0$ +missing/overlapping γ
- \star $\pi^+\pi^0\gamma$
- * $\pi^+\pi^0$ +accidental/splitted γ

or

* $\pi^0 \pi^0 \mu^+ \nu_\mu$ negligible??

(After 3gamma trigger) ⇒

classfication by # of γ s

- * $4\gamma + 1\gamma$ is missed and/or charged track miss-ID
- * 3γ + charged track miss-ID
- 2γ + fake γ
 and/or charged track miss-ID

what was problem

- background estimation was still imperfect.
 - $K\pi 2\gamma$ background no concrete estimation.

$K_{\pi 2 \gamma}$ background estimation

pure UMC-based estimation(using $corrected F_s$): <0.194(90%CL)

missing energy tail of $K_{\pi 2\gamma}$ peak

UMC doesn't reprouduce missing energy distribution of real data.

kinfit tuning problems

Inconsistency might comes from different kinfit tunings between UMC and real data.

biased sample for $K_{\pi 2\gamma}$

G3PASS2 muon band cut is tight for $K_{\pi 2\gamma}$ G3PASS2/wo tight muon band was produced for this study.

Kinfit tuning

smearing UMC data in order to use same kinematic fitting parameters.

smeared variable set is same to TN370('95 $K_{\pi 2 \gamma}$)

$$etot = etot + 2.73 * \sigma$$

 $ptot = ptot + 2.45 * \sigma$
 $E_{\gamma} = E_{\gamma} + 0.692 \sqrt{E_{\gamma}} \sigma$
BV z offset \Leftarrow no smearing

Kinfit tuning result

Kp3 acceptance in this region(pion band) is enhanced.

new problem

absolute value of expected events in/out of signal BOX is not consistent with UMC expectation.

★ $K_{\mu3\gamma}$ acceptance \leftarrow due to EGCUT

details will be studied.

Dicay-in-flight enhanced $K_{\pi 2\gamma}$ UMC

Decay-in-flight enhanced: event generation is discarded if π^+ stops due to energy loss. This will help when missing energy tail is well understood.

Background summary

From 1/3 sample study

sources	#events
$K_{\pi 3}$	0.614+ <1.84
$K_{\pi 2 \gamma}$	<0.194?
$K_{\mu3} + Acc$	0.803
$K_{\mu3}$ + splitted γ	negligible
$K_{e3}/K_{e3\gamma}$	0.505
All Backgrounds	1.92 +<2.03

 $K_{\pi 2 \gamma}$ study is still imperfect.

Analysis schedule

Problems

- \star $K_{\pi 2 \gamma}$ background estimation is still imperfect
- kinfit tuning consistency(or do away with kinematic fitting)

Full(or 2/3) sample study

- background estimation consistency check
- Physics result

Summary

checked that smearing is important. But It needs more study.

- * $K_{\pi 2\gamma}$ background study.
- Positve Evidence of signal good final plot(s)
- Physics Results